

LDR6290 USB PD3.0 通信芯片

REV 1.0

文档历史

V1.0	初始版本	2021-06-01
------	------	------------

深圳市乐得瑞科技有限公司 www.legendary.net.cn

目录

1	概述3
2	特点4
3	LDR6290 引脚功能说明
3. 1 3. 2 3. 3 3. 4	LDR6290 脚位图 - 4 - LDR6290 引脚功能说明 - 5 - 功率表 - 6 - 电压反馈 - 6 -
4	功能说明7
5	性能参数8
5. 1 5. 2 5. 3	绝对最大值(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)8
6	封装尺寸9

1 概述

LDR6290 芯片是乐得瑞科技设计的单 USB C 口的 PD3.0 协议通信芯片,并且具有 USB 口升级和 Billboard 的功能,以及通过 VDM 协商让智能设备进入 Alternate Mode 输出 DP 信号的功能,特别适用于 DC 供电的台式显示器和转接器方案。当使用了 LDR6290 芯片的设备接入 USB HOST 时,会在 HOST 端弹出 Billboard 窗口,提醒用户该设备所具有的 Alternate Mode 功能。

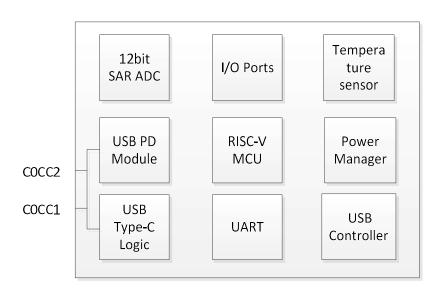
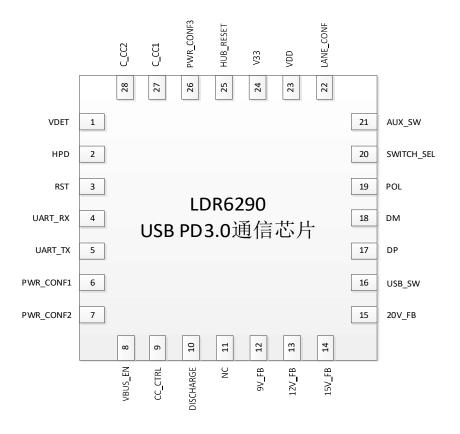


图 1 LDR6290 内部结构框图



2 特点

- ◆支持 USB PD3. 1/3. 0/2. 0 协议
- ◆支持 Billboard Device Class 及 USB 转串口功能。计算机端系统为 Windows10 及 Windows10 以上时则无需下载驱动,对 Windows10 以下的系统,请自行从网络上下载并安装 Windows CDC 驱动程序。
- ◆自动进行 DR_SWAP 转为 UFP 模式
- ◆通过 VDM 协商申请, 让智能设备进入 ALT MODE 支持 DP 输出
- ◆全速 USB 设备接口,支持 1.1 以上版本,Billboard 支持 USB2.01 以上的版本,外围元器件无需晶体和电容
- ◆QFN-28 4*4 封装

3 LDR6290 引脚功能说明

3.1 LDR6290 脚位图

图 2 LDR6290 脚位图

3.2 LDR6290 引脚功能说明

序号		类型	功能描述
1	VDET	输入	VBUS 电压检测脚, 需用 36K 和 12K 分压后采样
2	HPD	输入	DP 输入申请脚,LDR6290 检测到该脚为高电平时向设备申请 DP 信号,为低电平时,通知设备断开 DP 信号
3	RST	输入	外部复位输入,内置下拉电阻
4	UART_RX/I2C_CLK	输入/输出	UART 串行数据输入,CC1 连接时给 CC2 供电
5	UART_TX/I2C_SDA	输出	UART 串行数据输出,CC2 连接时给 CC1 供电
6	PWR_CONF1/CC1	输入/输出	输出功率配置引脚 1,与 PWR_CONF2、PWR_CONF3 一起使用配置 C 口输出功率值
7	PWR_CONF2/CC2	输入/输出	输出功率配置引脚 2
8	VBUS_EN	输出	C 口电源 VBUS 使能脚
9	CC_CTRL	输出	C_CC1、C_CC2 导通控制脚,LDR6290 初始化完成 后,置低该脚
10	DISCHARGE	输出	C口VBUS放电脚,当VUBS电压变化时,新电压小于旧电压1V以上时,该脚会置高控制MOS导通放电电阻
11	NC	输出	悬空
12	9V_FB	输入/输出	9V 反馈引脚
13	12V_FB	输入/输出	12V 反馈引脚
14	15V_FB	输入/输出	15V 反馈引脚
15	20V_FB	输入/输出	20V 反馈引脚
16	USB_SW	输出	USB2.0 数据切换脚,外部10K上拉到3.3V或者5V
17	DP	输入/输出	USB 设备 D+端
18	DM	输入/输出	USB 设备 D-端
19	POL	输出	C 口锁定方向,低电平表示锁定 CC1,高电平表示锁定 CC2
20	SWITCH_SEL	输入	SWITCH 游戏机投屏选择脚,该脚悬空支持 SWITCH 投屏; 10K 下拉到 GND,不支持 SWITCH 投屏
21	AUX_SW	输出	C口 AUXP/N 切换脚
22	LANE_CONF	输入	DP lane 模式配置脚,该脚悬空为 4lane 模式; 10K 下拉到 GND 为 2lane 模式
23	VDD	电源	芯片供电电源
24	V33	电源	内部 USB 电源调整器输出和内部 USB 电源输入,当电源电压小于 3.6V 时连接 VDD 输入外部电源,当
			电源电压大于 3.6V 时外接 0.1uF 电源退耦电容
25	HUB_RESET	输入/输出	HUB 芯片复位脚,DR_SWAP 过程中输出 500ms 低电平复位 HUB 芯片
26	PWR_CONF3	输入	输出功率配置引脚 3
27	C_CC1	输入/输出	C 口配置通道 1

28 C_CC2 输入/输出 C 口配置通道 2

3.3 功率表

PWR_CONF1	PWR_CONF2	PWR_CONF3	C口输出功率值选项
NC	NC	NC	5V/3A
10K 下拉 GND	NC	NC	5V/3A, 9V/3A
NC	10K 下拉 GND	NC	5V/3A, 9V/3A, 12V/3A
10K 下拉 GND	10K 下拉 GND	NC	5V/3A, 9V/3A, 12V/3A, 15V/3A
X	X	10K 下拉 GND	5V/3A, 9V/3A, 12V/3A, 15V/3A, 20V/3. 25A

说明: NC 代表悬空, X 代表 NC 或者 10K 下拉 GND

3.4 电压反馈

9V_FB	12V_FB	15V_FB	20V_FB	C口输出电压
NC	NC	NC	NC	5V
R_9V_FB	NC	NC	NC	5V, 9V
R_9V_FB	R_12V_FB	NC	NC	5V, 9V, 12V
R_9V_FB	R_12V_FB	R_15V_FB	NC	5V, 9V, 12V, 15V
R 9V FB	R 12V FB	R 15V FB	R 20V FB	5V, 9V, 12V, 15V, 20V

说明: R_9V_FB、R_12V_FB、R_15V_FB、R_20V_FB 分别代表 9V、12V、15V、20V 电压的反馈电阻。当 C 口需要输出 9V 时,LDR6290 置低 9V_FB 引脚;输出 12V 时,LDR6290 置低 9V_FB 和 12V_FB 引脚;输出 15V 时,LDR6290 置低 9V_FB、12V_FB 和 R_15V_FB 引脚;输出 20V 时,LDR6290 置低 9V_FB 和 12V_FB、R_15V_FB 和 R_20V_FB 引脚。

4 功能说明

LDR6290 芯片内置了 USB 上拉电阻, DP 和 DM 引脚应该直接连接到 USB 总线上。 LDR6290 芯片内置了电源上电复位电路,还提供了低电平有效的外部复位输入引脚。

LDR6290 芯片已经内置时钟发生器,无需外部晶体及震荡电容。

LDR6290 芯片支持 5V 电源电压或者 3.3V 电源电压。当使用 5V 工作电压时,LDR6290 芯片的 VDD 引脚输入外部 5V 电源,并且 V33 引脚应该外接容量为 0.1uF 的电源退耦电容。当使用 3.3V 工作电压时,LDR6290 芯片的 V33 引脚应该 与 VDD 引脚相连接,同时输入外部的 3.3V 电源,并且与 LDR6290 芯片相连接的 其它电路的工作电压不能超过 3.3V。

LDR6290 可以支持 Billboard 描述符,根据弹出窗口的不同知道问题所在。

5 性能参数

5.1 绝对最大值(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

名称	参数说明	最小值	最大值	单位
TA	工作时的环境温度	-40	85	° C
TS	储存时的环境温度	-55	125	° C
VDD	电源电压	-0.5	6. 0	V
VIO	输入或者输出引脚上的电压	-0.5	VDD+0.5	V

5.2 建议工作条件

名称	参数说明	最小值	典型值	最大值	单位
TA	工作时的环境温度	-40	25	85	°C
VDD	电源电压	3. 3V	5	5. 5	V

5.3 ESD 特性

名称	参数说明	范围	单位
V_{ESD}	人体模型 ESD	± 2000	V
	机器模型 ESD	± 1000	V

6 封装尺寸

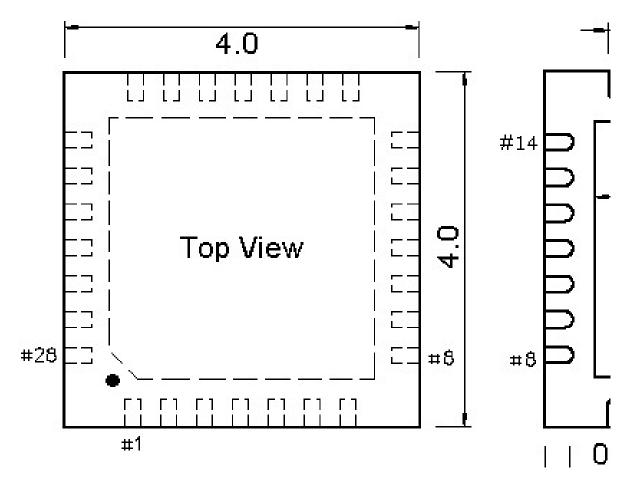


图 3 LDR6290 封装尺寸

通讯地址:深圳市龙华新区大浪街道工业园路 1 号凯豪达广场科尔雅苑 A 栋 17G

邮政编码: 518067

公司电话: +(86 755) 36538962

公司网站: www.legendary.net.cn